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Ray chaos in optical cavities based upon standard laser mirrors
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We present a composite optical cavity made of standard laser mirrors; the cavity consists of a suitable
combination of stable and unstable cavities. In spite of its very open nature the composite cavity shows ray
chaos, which may be either soft or hard, depending on the cavity configuration. This opens a convenient route
for experimental studies of the quantum aspects of a chaotic wave field.
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[. INTRODUCTION cavity and satisfies the relatidn< 2R in order to assure the
geometrical stability of the whole system. Depending on the
The quantum mechanics, and more generally the wav&alues ofR, r, andl each of the two subcavities can be either
mechanics of systems that are classically chaotic have drawgfable or unstable. FérR—r they are unstable; this case is
much interest lately; this field is loosely indicated as “quan-the first object of our studysee below for the casB—r
tum chaos” or “wave chaos[1-7]. Practical experimental <!<R, where the two subcavities are stabk generic ray
systems that display wave chaos are rare; best known is tfﬂé‘”g in the plane of Fig. k) and undergoing specular re-
two-dimensional (2D) microwave stadiumlike resonator Mections on the cavity mirrors will never leave this plane. As
which has developed into a very useful tool to study issues o/l P& shown in this paper, the 2D ray dynamics in this
wave chao$2,5]. Our interest is in amptical implementa- plane can be completely chaotic; consequently, from now on,

tion of all this; that would allow us to study the quantum we restrict our attention to the truly 2D cavity shown in Fig.

. . . 1(c). Moreover, as discussed in the conclusions, this cavity
aspects of a chaotic wave field, such as random lasing, ex-

cess noise, localization, and entanglerf@t10]. model can be practically implemented by using cylindrical

However, the construction of a high-quality closed reso- M OrS with symmetry axiX orthogonal to the axis shown

nator (such as a stadiunis presently impossible in the op- in Fig. 1. This choice increases the possibilities to have wave
. . P ntly Imp . OP" Chaos since it destroys the separability of the field equations
tical domain due to lack of omnidirectional mirror coatings

with R=100% reflectivity. The best one can do is to use wr]ltten in cylindrical coordinates with respect to tHeaxis

metal coating; however this has juR& 95% in the visible
spectrum([6,11]. Of course, dielectric multilayered mirrors (a) (b)
can reachR=99.999% (or more but these are far from be-
ing omnidirectional.

This leads to the consideration of apenoptical cavity.
One approach is to use a dielectric or semiconductor mi-
croresonator with a deformed cross section and profit from
(nonomnidirectional total internal reflection[7,12]; how-
ever, such a microresonator is difficult to fabricate and con- (c) Y
trol. Our approach is to construct an open cavity based upon
standard high-reflectivity laser mirrors. We will show, sur-
prisingly, that this open cavity allows one to generate hard b
chaos; a closed cavity is not required for that. We will limit y I?y

\
R

ourselves to prove that our system is classically chaotic; by
definition, this is sufficient for a system to be wave chaotic.
A proper wave-mechanical treatment, including the calcula-
tion of the spectrum, will be given lat¢i3].

The basic idea is as follow§ig. 1(a)]. An unstableopti-
cal cavity[14] can be built with a concavéocussing mirror
with radius of curvaturdRk and a convexdispersing mirror L
W'th. radius of curvatgre at d|$t.a.ncé<R_—.r. This l_mstable FIG. 1. (a) An unstable cavity is built of a cylindrical concave
cavity has exponent_|a_l Sens'“V'tY to initial condltlofﬂsS] mirror (with radiusR) and a cylindrical convex ongvith radiusr)
but does not have mixing properties because an escaping ray gistancd <R—r. (b) Two unstable cavities are coupled to form
never comes back; therefore chaos cannot occur. We oveg single cavity which is globally stable far<2R. (c) Schematic
come this difficulty in the way illustrated in Fig.(); @  diagram of the cavity model utilized in the numerical analysis. For
second cavity, mirror symmetric to the first, is utilized to || calculations in this paper we have assuneed0.003 andb
recollect rays leaving the first cavity and eventually put them=0.025 where all length are expressed in mefé@. On the left
back near the starting point. The final design of our composmirror the positiony and the velocity define the geometry of the
ite cavity is depicted in Fig. (t); L is the total length of the chaotic scattering.
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II. RESULTS 0

The study of the chaotic properties of our composite cav-
ity starts from the analogy betweageometric opticsof a 0.05
light ray andHamiltonian mechanicsf a point particlg 16]. Vo
In this spirit we consider the light ray as a unit-mass point v
particle that undergoes elastic collisions on hard walls coin- -0.05
cident with the surfaces of the mirrors. Between two con-
secutive collisions, the motion of the point particle is deter- 0.1

mined by the free HamiltoniarH=p?/2 whereas at a
collision the positionr(t) and the velocityv(t) (|Jv(t)]
=1 m/s throughout this papeof the particle satisfy the law
of reflection

rty)=r(t-), v(ty)=(1-2nnv(t_), &)

wheret.=t+07", n is the unit vector orthogonal to the sur-
face of the mirror at the point of impact and the second rank
tensor nn has Cartesian componen{in];;=n;n; (i,] -0.02 -0.01 0 0.01 0.02
=1,2). The dynamics described by Ed%) preserves both y
the phase space vqlumes anq f{he symp_le_ctlc pro;ﬁé&_}y FIG. 2. Poincarenaps obtained as described in the text. In both
The losses of a cavity due to finite reflectivity of the mirrors . =
o . . . cases the cavity parametessand b are chosen asa=0.003, b

can be quantified by the finesse of the cavity, that is, the=0.025. Note thab,=0.1 corresponds to an angle of incidence of
number of bounces that leads o energy decay. For op- about 6°[17]. (a) yHard-chaos configurationR=1, r=0.25, |
tical cavities realized with commercially available mirrors _g 4. Asingle chaotic orbit is shown(b) Soft-chaos configura-
values for the finesse of ¥@or even largercan be achieved ign: R=1, r=0.9, |=0.45. Three stable orbit&oncentric el-
[17]. In our model we assume a mirror reflectivity equal tojipseg and a single chaotic one are shown.
100% for all mirrors and consequently we restrict ourselves
to losses due to the finite transverse dimensions of the cofing pack and forth along th2 axis, the positive Lyapunov
cave mirrorsiparametetb in Fig. 1(c)]. If chaos occurs, al-  exponentx, for such orbit is given by
most all trajectories will escape in the eftl5]; the key
guestion is whether a typical trajectory will survive suffi- v
ciently long SO that c;haos is still a useful concept. )\ozﬁln M, (v=1 ml9. (4

We use the Poincarsurface of sectiofSOS [15] as a
tool to display the dynamical properties of our composite

: P . . With the numerical values utilized for Fig.(& we obtain
cavity. There are several possibilities for defining a SOS; W& ~1 94 andho=8.27 (in units of s 1).

choose as reference surface the left mirror, plotlirrmdo X : .
; ; ; ; We may now ask what will happen if the two subcavities
h h fl h . In Figa)2w X . .
each time the ray is reflected by that mirror. In Figa)ave of Fig. 1(c) arestable(i.e., R—r<I<R) so that there i$0

show the SOS generated bysingle orbit for a cavity con- magnification. Will the chaoticitypartly) survive, or not? As

figuration such that <R—r (geometrically unstable sub- A i . S .
o . .shown in Fig. 2b) we find that in that case the periodic orbit
cavitie9. Apparently, hard chaos occurs; the unstable peri bouncing along theZ axis is represented by selliptical

odic orbit bouncing along the&Z axis of the cavity is 4
i : ixed point on the SOS, surrounded by a Kolmogorov-
represented by an hyperbolic fixed point on the SOS. Th rnold-Moser (KAM) island of stability in which three

explicit value of the Lyapunov exponent for this orbit can be ) . - , .
eagily calculated epr)(/)it?ng the atl?ove mentioned analogy bes—tab!? trajectories are clearly visible. We f!nd that desp'?‘? the
tween geometric optics and Hamiltonian mechanics. We re§tablllty of the two subcavities, the KAM island of stability

call that the magnificatioM [14] of the cavity shown in Fig. is embedded in a sea qf chaotic trajectories with a pqs_itive
1(a) can be easily calculated in terms mf the half of trace Lyapunov exponent, as is to be expected for a closed billiard,
of the ABCD matrix of the cavity but note that we deal with an open system! Therefore, de-

pending on the values of the paramet@rs, andl our cavity
can exhibit either fully chaotic behavior or soft-chaotic be-
havior with coexistence of ordered and stochastic trajecto-
ries. A rigorous theory for the calculation of average
Lyapunov exponents, entropies, and escape time for open
systems has been developed by Gaspard and coworkers in
m=2( 1— '_) ( 1+|_ 1. ) the past decadgl8]. In short, in chaotic open systems there
R r exists a fractal set of never-escaping orbits, the so-called
repeller [19] on which quantities as the average Lyapunov
Since theABCD matrix of the cavity coincides with the exponents can be evaluated. In a Hamiltonian system with
monodromy matri 2] for the unstable periodic orbit bounc- two degrees of freedom the Lyapunov exponents come in

M=m+(m?—1)¥2 2

where
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TABLE I. Results for Lyapunov exponents for different cav- Vi
ity configurations which are specified by(l,) as the length of the (a)
right (left) subcavity andR(r) as the radius of curvature of the 3000
concave(convex mirror. All lengths are given in meters, further 2000
details are given in the text.
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0.80 0.01 0.20 0.01910.0004

3000
2000
1000

PR PP PR

0l .
0.01681 ox L4 16814
4000 i

Escape Time (sec)

pairs (\;,\_;), (i=1,2) with \;=A,=0 andA;+\_;=0
[15]. We have calculatef20,21] the values of\, for differ- 3000
ent long-living trajectories belonging to the repeller for dif- 2000
ferent cavity configurations; the “pairs rulefsum of all
Lyapunov exponents equal t9 Bias been confirmed within
our numerical accuracy. The results are shown in Table I. 0h
Each cavity configuration is labeled as LR where L,R 0.016813916
=U,M, S are labels which indicate the stability properties of
the left and right subcavity, respectively)= Unstable (m FIG. 3. Escape-time as a function of the impact paramefer
>1), M= Marginally stable n=1), S= Stable (n<1). the same hard-chaos cavity configuration utilized in Fi¢g),2
In all cases we find a positive Lyapunov exponent whichshown at different relative magnificationsX1 15X, and 20<) of
confirms that chaos has developed; the maximum valye ( the horizontal axis. The fin?te. value~(4000 s) for each s!ngular
—0.104) occurs for th&JU case. We stress the fact that the Peak corresponds to the finite value X0") of the maximum
values for the parameters characterizing the different cavit?“m“be_r of bounces allowed in the simulations. In the three pictures
configurations given in Table | are experimentally realistic he W'”d‘?V_VS of continuity” (arrows are clear_ly visible and also
(i.e., such mirrors are commercially available the. re.petltlon of the same pattern on different scaleslf-
Note that the value.g=8.27 quoted above for thgeri- similarity).
odic orbit bouncing along th& axis of the unstable cavity is
quite different from the average valag,,=0.10. We argue note that going from one picture to the next both the density
that this is due to the fact that the same unstable periodiand the height of the singular peaks increase, thus indicating
orbit may be considered as an orbit of the single half-cavitythat the repeller set is dense. Moreover the windows of con-
(very open system, no chaos at)allr as an orbit of the tinuity act as convenient markers of the self-similar nature of
overall composite cavity. Consequently the subcavity valughe pattern as a whole; this self-similarity strongly suggests
for N4, even though it remains obviously the same, is “di- that the escape-time function is singular on a fractal set, as
luted” into the value for the whole cavity. expected for a repeller. The dense occurrence of singular
It is possible to obtain a picture of the repeller set bypoints is a clear signature of the mixing mechanism due to
plotting the escape-time functiofi5]. For each trajectory the confinement generated by the outer concave mirrors.
starting at positiory (“impact parameter}j and horizontal Note that typical escape times are much larger than, 1/

VelOCityV on the left mirl’or[see F|g 10)], we calculate the thus a”owing amp|e time for chaos to deve|op_
time at which the last bounce occurs before the ray leaves the

cavity. Trajectories which escape in a finite ti@most al),

give a finite value for the escape-time function, whereas
trapped orbits are represented as singular points. By defini-
tion, all initial conditions leading to a singularity of the  We have shown that it is possible to build, with commer-
escape-time function belong to the repeller itself. In Fig. 3cially available optical elements, a composite optical cavity
we show a portion of the escape-time function for a hardwhich displays classical chaotic properties. Despite the “lo-
chaos cavity configuratiofJU: same parameters as in Fig. cal” Hamiltonian structure of its phase space our optical cav-
2(a)]. In Fig. 3@ we observe clearly three “windows of ity is, as we had anticipated, apensystem. Opening up a
continuity” [18] (arrows for which the escape-time function closed chaotic Hamiltonian system may generate transiently
has a small value. Actually, Fig. 3a as a whole results fronthaotic behavior due to the escape of almost all the trajecto-
the blowup of the escape-time function in a region boundedies[22] and our composite cavity promises an easy experi-
by two other windows of continuity which are partially vis- mental realization thereof. Evidence for ray chaos comes
ible on the left and the right side of the figure. Consecutiveboth from the computation of Lyapunov exponents and from
blowups of Fig. 8 are shown in Figs. ®) and 3c). We  the plot of the escape-time functions. The huge density of

1000

0.016813926

IlIl. CONCLUSIONS
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singular points in the escape-time functions is a strong indiself. In this case Fig. (8 represents the unstable cross sec-
cation that the anticipated mixing works; unstable orbitstion of the left subcavity. The realization of such an open
which leave one half-cavity are recollected by the other halfchaotic cavity in the optical domain opens a broad perspec-
cavity until they become again unstable and come back t@ive; many quantum-optics experiments can now be done on
the first cavity. Orbits for which this process is repeated for-g practical chaotic syster8,10. Such experiments will
ever generate singularities in the escape function. greatly benefit from the ease of manipulation and control
Finally, a convenient experimental way to realize theqffered by the macroscopic nature of our composite cavity;

composite cavity as a 3D system seems to be by using Cyyork along these lines is in progress in our group.
lindrical mirrors in order to limit the chaotic beam dynamics

to the meridional plane. A biconvex cylindrical mirrrith This project is part of the program of FOM and is also
X as the axis of the cylindgris dispersing for trajectories supported by the EU under the IST-ATESIT contract. We
lying in a plane orthogonal to th& axis and is neutralflat  thanks J. Dingjan and T. Klaassen for stimulating discus-
surface for trajectories in a plane containing theaxis it-  sions.
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