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Ray chaos in optical cavities based upon standard laser mirrors
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~Received 8 May 2003; published 28 October 2003!

We present a composite optical cavity made of standard laser mirrors; the cavity consists of a suitable
combination of stable and unstable cavities. In spite of its very open nature the composite cavity shows ray
chaos, which may be either soft or hard, depending on the cavity configuration. This opens a convenient route
for experimental studies of the quantum aspects of a chaotic wave field.

DOI: 10.1103/PhysRevE.68.046208 PACS number~s!: 05.45.Gg, 42.60.Da, 42.65.Sf
av
aw
n
l

t
r
s

m
e

o
-
gs

s
-

m
om

on
po
r-

ar
it
b

tic
la

g
v

to
em
o

the
er
is

-
s

is
on,
g.
vity
al

ave
ons

e

m

or
I. INTRODUCTION

The quantum mechanics, and more generally the w
mechanics of systems that are classically chaotic have dr
much interest lately; this field is loosely indicated as ‘‘qua
tum chaos’’ or ‘‘wave chaos’’@1–7#. Practical experimenta
systems that display wave chaos are rare; best known is
two-dimensional ~2D! microwave stadiumlike resonato
which has developed into a very useful tool to study issue
wave chaos@2,5#. Our interest is in anoptical implementa-
tion of all this; that would allow us to study the quantu
aspects of a chaotic wave field, such as random lasing,
cess noise, localization, and entanglement@8–10#.

However, the construction of a high-quality closed res
nator ~such as a stadium! is presently impossible in the op
tical domain due to lack of omnidirectional mirror coatin
with R5100% reflectivity. The best one can do is to use
metal coating; however this has justR,95% in the visible
spectrum@6,11#. Of course, dielectric multilayered mirror
can reachR599.999%~or more! but these are far from be
ing omnidirectional.

This leads to the consideration of anopenoptical cavity.
One approach is to use a dielectric or semiconductor
croresonator with a deformed cross section and profit fr
~nonomnidirectional! total internal reflection@7,12#; how-
ever, such a microresonator is difficult to fabricate and c
trol. Our approach is to construct an open cavity based u
standard high-reflectivity laser mirrors. We will show, su
prisingly, that this open cavity allows one to generate h
chaos; a closed cavity is not required for that. We will lim
ourselves to prove that our system is classically chaotic;
definition, this is sufficient for a system to be wave chao
A proper wave-mechanical treatment, including the calcu
tion of the spectrum, will be given later@13#.

The basic idea is as follows@Fig. 1~a!#. An unstableopti-
cal cavity@14# can be built with a concave~focussing! mirror
with radius of curvatureR and a convex~dispersing! mirror
with radius of curvaturer at distancel ,R2r . This unstable
cavity has exponential sensitivity to initial conditions@15#
but does not have mixing properties because an escapin
never comes back; therefore chaos cannot occur. We o
come this difficulty in the way illustrated in Fig. 1~b!; a
second cavity, mirror symmetric to the first, is utilized
recollect rays leaving the first cavity and eventually put th
back near the starting point. The final design of our comp
ite cavity is depicted in Fig. 1~c!; L is the total length of the
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cavity and satisfies the relationL,2R in order to assure the
geometrical stability of the whole system. Depending on
values ofR, r, andl each of the two subcavities can be eith
stable or unstable. Forl ,R2r they are unstable; this case
the first object of our study~see below for the caseR2r
, l ,R, where the two subcavities are stable!. A generic ray
lying in the plane of Fig. 1~c! and undergoing specular re
flections on the cavity mirrors will never leave this plane. A
will be shown in this paper, the 2D ray dynamics in th
plane can be completely chaotic; consequently, from now
we restrict our attention to the truly 2D cavity shown in Fi
1~c!. Moreover, as discussed in the conclusions, this ca
model can be practically implemented by using cylindric
mirrors with symmetry axisX orthogonal to theZ axis shown
in Fig. 1. This choice increases the possibilities to have w
chaos since it destroys the separability of the field equati
written in cylindrical coordinates with respect to theZ axis
@1#.

FIG. 1. ~a! An unstable cavity is built of a cylindrical concav
mirror ~with radiusR) and a cylindrical convex one~with radiusr )
at distancel ,R2r . ~b! Two unstable cavities are coupled to for
a single cavity which is globally stable forL,2R. ~c! Schematic
diagram of the cavity model utilized in the numerical analysis. F
all calculations in this paper we have assumeda50.003 andb
50.025 where all length are expressed in meters@17#. On the left
mirror the positiony and the velocityv define the geometry of the
chaotic scattering.
©2003 The American Physical Society08-1
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II. RESULTS

The study of the chaotic properties of our composite c
ity starts from the analogy betweengeometric opticsof a
light ray andHamiltonian mechanicsof a point particle@16#.
In this spirit we consider the light ray as a unit-mass po
particle that undergoes elastic collisions on hard walls co
cident with the surfaces of the mirrors. Between two co
secutive collisions, the motion of the point particle is det
mined by the free HamiltonianH5p2/2 whereas at a
collision the positionr (t) and the velocityv(t) (uv(t)u
51 m/s throughout this paper! of the particle satisfy the law
of reflection

r ~ t1!5r ~ t2!, v~ t1!5~122nn!v~ t2!, ~1!

wheret65t601, n is the unit vector orthogonal to the su
face of the mirror at the point of impact and the second ra
tensor nn has Cartesian components@nn# i j 5ninj ( i , j
51,2). The dynamics described by Eqs.~1! preserves both
the phase space volumes and the symplectic property@15#.
The losses of a cavity due to finite reflectivity of the mirro
can be quantified by the finesse of the cavity, that is,
number of bounces that leads toe21 energy decay. For op
tical cavities realized with commercially available mirro
values for the finesse of 105 ~or even larger! can be achieved
@17#. In our model we assume a mirror reflectivity equal
100% for all mirrors and consequently we restrict oursel
to losses due to the finite transverse dimensions of the
cave mirrors@parameterb in Fig. 1~c!#. If chaos occurs, al-
most all trajectories will escape in the end@15#; the key
question is whether a typical trajectory will survive suf
ciently long SO that chaos is still a useful concept.

We use the Poincare´ surface of section~SOS! @15# as a
tool to display the dynamical properties of our compos
cavity. There are several possibilities for defining a SOS;
choose as reference surface the left mirror, plottingy andvy
each time the ray is reflected by that mirror. In Fig. 2~a! we
show the SOS generated by asingle orbit for a cavity con-
figuration such thatl ,R2r ~geometrically unstable sub
cavities!. Apparently, hard chaos occurs; the unstable p
odic orbit bouncing along theZ axis of the cavity is
represented by an hyperbolic fixed point on the SOS. T
explicit value of the Lyapunov exponent for this orbit can
easily calculated exploiting the above mentioned analogy
tween geometric optics and Hamiltonian mechanics. We
call that the magnificationM @14# of the cavity shown in Fig.
1~a! can be easily calculated in terms ofm, the half of trace
of the ABCD matrix of the cavity

M5m1~m221!1/2, ~2!

where

m52S 12
l

RD S 11
l

r D21. ~3!

Since theABCD matrix of the cavity coincides with the
monodromy matrix@2# for the unstable periodic orbit bounc
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ing back and forth along theZ axis, the positive Lyapunov
exponentl0 for such orbit is given by

l05
v
2l

ln M , ~v51 m/s!. ~4!

With the numerical values utilized for Fig. 2~a! we obtain
M.1.94 andl0.8.27 ~in units of s21).

We may now ask what will happen if the two subcaviti
of Fig. 1~c! arestable~i.e., R2r , l ,R) so that there isno
magnification. Will the chaoticity~partly! survive, or not? As
shown in Fig. 2~b! we find that in that case the periodic orb
bouncing along theZ axis is represented by anelliptical
fixed point on the SOS, surrounded by a Kolmogoro
Arnold-Moser ~KAM ! island of stability in which three
stable trajectories are clearly visible. We find that despite
stability of the two subcavities, the KAM island of stabilit
is embedded in a sea of chaotic trajectories with a posi
Lyapunov exponent, as is to be expected for a closed billia
but note that we deal with an open system! Therefore,
pending on the values of the parametersR, r, andl our cavity
can exhibit either fully chaotic behavior or soft-chaotic b
havior with coexistence of ordered and stochastic trajec
ries. A rigorous theory for the calculation of averag
Lyapunov exponents, entropies, and escape time for o
systems has been developed by Gaspard and coworke
the past decade@18#. In short, in chaotic open systems the
exists a fractal set of never-escaping orbits, the so-ca
repeller @19# on which quantities as the average Lyapun
exponents can be evaluated. In a Hamiltonian system w
two degrees of freedom the Lyapunov exponents come

FIG. 2. Poincare´ maps obtained as described in the text. In bo
cases the cavity parametersa and b are chosen as:a50.003, b
50.025. Note thatvy.0.1 corresponds to an angle of incidence
about 6° @17#. ~a! Hard-chaos configuration:R51, r 50.25, l
50.04. A single chaotic orbit is shown.~b! Soft-chaos configura-
tion: R51, r 50.9, l 50.45. Three stable orbits~concentric el-
lipses! and a single chaotic one are shown.
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pairs (l i ,l2 i), (i 51,2) with l1>l250 and l i1l2 i50
@15#. We have calculated@20,21# the values ofl1 for differ-
ent long-living trajectories belonging to the repeller for d
ferent cavity configurations; the ‘‘pairs rule’’~sum of all
Lyapunov exponents equal to 0! has been confirmed within
our numerical accuracy. The results are shown in Tabl
Each cavity configuration is labeled as LR where L
5U,M ,S are labels which indicate the stability properties
the left and right subcavity, respectively:U5 Unstable (m
.1), M5 Marginally stable (m51), S5 Stable (m,1).
In all cases we find a positive Lyapunov exponent wh
confirms that chaos has developed; the maximum valuel1
50.104) occurs for theUU case. We stress the fact that th
values for the parameters characterizing the different ca
configurations given in Table I are experimentally realis
~i.e., such mirrors are commercially available!.

Note that the valuel0.8.27 quoted above for theperi-
odic orbit bouncing along theZ axis of the unstable cavity is
quite different from the average valuelUU.0.10. We argue
that this is due to the fact that the same unstable perio
orbit may be considered as an orbit of the single half-cav
~very open system, no chaos at all! or as an orbit of the
overall composite cavity. Consequently the subcavity va
for l1, even though it remains obviously the same, is ‘‘d
luted’’ into the value for the whole cavity.

It is possible to obtain a picture of the repeller set
plotting the escape-time function@15#. For each trajectory
starting at positiony ~‘‘impact parameter’’! and horizontal
velocity v on the left mirror@see Fig. 1~c!#, we calculate the
time at which the last bounce occurs before the ray leaves
cavity. Trajectories which escape in a finite time~almost all!,
give a finite value for the escape-time function, where
trapped orbits are represented as singular points. By de
tion, all initial conditions leading to a singularity of th
escape-time function belong to the repeller itself. In Fig
we show a portion of the escape-time function for a ha
chaos cavity configuration@UU: same parameters as in Fi
2~a!#. In Fig. 3~a! we observe clearly three ‘‘windows o
continuity’’ @18# ~arrows! for which the escape-time functio
has a small value. Actually, Fig. 3a as a whole results fr
the blowup of the escape-time function in a region bound
by two other windows of continuity which are partially vis
ible on the left and the right side of the figure. Consecut
blowups of Fig. 3~a! are shown in Figs. 3~b! and 3~c!. We

TABLE I. Results for Lyapunov exponentsl1 for different cav-
ity configurations which are specified byl R( l L) as the length of the
right ~left! subcavity andR(r ) as the radius of curvature of th
concave~convex! mirror. All lengths are given in meters, furthe
details are given in the text.

Configuration R r lL l R l1

UU 1 0.25 0.04 0.04 0.10460.004
US 1 0.90 0.05 0.30 0.016560.0002
SS 1 0.90 0.45 0.45 0.004060.0001
MM 1 0.80 0.20 0.20 0.009060.00015
SM 1 0.80 0.40 0.20 0.009660.0001
UM 1 0.80 0.01 0.20 0.019160.0004
04620
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note that going from one picture to the next both the den
and the height of the singular peaks increase, thus indica
that the repeller set is dense. Moreover the windows of c
tinuity act as convenient markers of the self-similar nature
the pattern as a whole; this self-similarity strongly sugge
that the escape-time function is singular on a fractal set
expected for a repeller. The dense occurrence of sing
points is a clear signature of the mixing mechanism due
the confinement generated by the outer concave mirr
Note that typical escape times are much larger than 1/lUU ,
thus allowing ample time for chaos to develop.

III. CONCLUSIONS

We have shown that it is possible to build, with comme
cially available optical elements, a composite optical cav
which displays classical chaotic properties. Despite the ‘‘
cal’’ Hamiltonian structure of its phase space our optical c
ity is, as we had anticipated, anopensystem. Opening up a
closed chaotic Hamiltonian system may generate transie
chaotic behavior due to the escape of almost all the traje
ries @22# and our composite cavity promises an easy exp
mental realization thereof. Evidence for ray chaos com
both from the computation of Lyapunov exponents and fr
the plot of the escape-time functions. The huge density

FIG. 3. Escape-time as a function of the impact parametery for
the same hard-chaos cavity configuration utilized in Fig. 2~a!,
shown at different relative magnifications (13, 153, and 203) of
the horizontal axis. The finite value ('4000 s) for each singula
peak corresponds to the finite value (63104) of the maximum
number of bounces allowed in the simulations. In the three pictu
the ‘‘windows of continuity’’ ~arrows! are clearly visible and also
the repetition of the same pattern on different scales~self-
similarity!.
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singular points in the escape-time functions is a strong in
cation that the anticipated mixing works; unstable orb
which leave one half-cavity are recollected by the other h
cavity until they become again unstable and come back
the first cavity. Orbits for which this process is repeated f
ever generate singularities in the escape function.

Finally, a convenient experimental way to realize t
composite cavity as a 3D system seems to be by using
lindrical mirrors in order to limit the chaotic beam dynami
to the meridional plane. A biconvex cylindrical mirror~with
X as the axis of the cylinder! is dispersing for trajectories
lying in a plane orthogonal to theX axis and is neutral~flat
surface! for trajectories in a plane containing theX axis it-
an

i-

v.

y

pt
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self. In this case Fig. 1~a! represents the unstable cross se
tion of the left subcavity. The realization of such an op
chaotic cavity in the optical domain opens a broad persp
tive; many quantum-optics experiments can now be done
a practical chaotic system@8,10#. Such experiments will
greatly benefit from the ease of manipulation and con
offered by the macroscopic nature of our composite cav
work along these lines is in progress in our group.

This project is part of the program of FOM and is al
supported by the EU under the IST-ATESIT contract. W
thanks J. Dingjan and T. Klaassen for stimulating disc
sions.
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